Neural Discrimination of English Vowels in Late Spanish-English Bilinguals

Daniela Castillo
Faculty Advisor: Dr. Valerie L. Shafer
The CUNY Graduate Center
Languages Other Than English in NY

1,869,995

Spanish speakers

over age 5 in NYC

Languages Other Than English (LOTE) spoken by New Yorkers over 5 years of age, US Census Bureau (2009) American Community Survey Table B160001 in Garcia, Zakharia, & Otcu (2013, p13).
L1 and L2 Speech Perception

**L1**
- Exposure to L1
  → *Statistical Learning*
- *Native Language Neural Commitment*

(Kuhl, 1991; Kuhl, 2004)

**L2**
- **Automatic Selective Perception (ASP) Model:**
  *highly automatic*
  *efficient cue selection*
- **L1 Selective Perceptual Routines**
  *e.g.: “cat” vs “cut”*

(Strange, 2011; Strange & Shafer, 2008)
## Vowel Inventories

<table>
<thead>
<tr>
<th></th>
<th>English</th>
<th>Japanese</th>
<th>Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vowel Inventory</td>
<td>11 vowels</td>
<td>5 vowels</td>
<td>5 vowels</td>
</tr>
<tr>
<td>Primary cue</td>
<td>Spectral</td>
<td>Duration</td>
<td>Spectral</td>
</tr>
<tr>
<td>Secondary cue</td>
<td>Duration</td>
<td>Spectral</td>
<td>---</td>
</tr>
</tbody>
</table>
Perception in Late L2 Learning

- Relies on phonetic mode of perception

- L1 perceptual routines dominate (Hisagi et al., 2011)

- Disadvantages (Strange, 2011)
  1. Attentional focus = more cognitive resources
  2. Slower perception
  3. May suffer under suboptimal conditions
     *e.g., background noise*
Current Study

Do Spanish-English bilinguals who learned American English after the age of 14 rely more on *spectral* or *durational* information to distinguish English vowels that are non-contrastive in Spanish?
Hypotheses

When directing attention away from the stimulus, late L2 learners of English will...

...fall back on their L1 perceptual routines

...rely on durational cues since duration is a more robust cue than spectral information
Stimuli

3 tokens each of /ɑ/, /æ/, and /ʌ/ (e.g., hot, hat, and hut)

in /Vpə/ disyllables

Mean vowel duration

[ɑ] = 184 ms
[æ] = 187 ms
[ʌ] = 134 ms

Figure 1: Formant Values at midpoint for American English vowels
Participants

Native Spanish speakers who learned English after age 14

<table>
<thead>
<tr>
<th>n=10</th>
<th>Age</th>
<th>Age Moved to US</th>
<th>Total Years Lived in US</th>
<th>*AEA</th>
<th>Handedness</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>35.8</td>
<td>24.8</td>
<td>10.9</td>
<td>24.1</td>
<td>Right= 8</td>
<td>F= 7</td>
</tr>
<tr>
<td>SD</td>
<td>8.0</td>
<td>6.6</td>
<td>5.6</td>
<td>7.9</td>
<td>Left= 0</td>
<td>M= 3</td>
</tr>
<tr>
<td>Median</td>
<td>36</td>
<td>25</td>
<td>11</td>
<td>25</td>
<td>Ambidextrous= 2</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>26-48</td>
<td>15-36</td>
<td>3.5-20</td>
<td>6-35</td>
<td>12 American English monolingual controls</td>
<td></td>
</tr>
</tbody>
</table>

*Age of English Acquisition
Task

Auditory Oddball Paradigm

**Condition 1:** 80% Standard [ɑ]; 10% Deviant [æ]; 10% Deviant [ʌ]

**Condition 2:** 80% Standard [ʌ]; 10% Deviant [æ]; 10% Deviant [ɑ]

Visual Oddball Task

- Directs attention away from the auditory modality

Behavioral Discrimination Task

- Requires attentional resources

Brain responses were recorded during the task to elicit a brain-discriminative response, called the Mismatch Negativity (MMN).

MMN is an increased negativity of neural electrical activity to a change at electrodes on top of the head.
ERP Results

Both groups show a negativity (MMN) followed by a positivity

\(/æ/-/æ/\)

\(/ʌ/-/æ/\)

suggesting fairly easy discrimination
ERP Results

/ʌ/ is neurally discriminated as distinct from /ɑ/ in both groups (i.e., /ɑ/-/ʌ/ contrast)

/ɑ/
Spanish speakers do not discriminate it as distinct from /ʌ/ (i.e., /ʌ/-/ɑ/ contrast; but small pMMR observed)
Results

Behavioral task
\( /\Lambda/-/æ/ > /\Lambda/-/ə/ \)

<table>
<thead>
<tr>
<th></th>
<th>Am Eng</th>
<th>Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral</td>
<td>95%</td>
<td>93%</td>
</tr>
<tr>
<td>task /æ/</td>
<td>75%</td>
<td>70%</td>
</tr>
<tr>
<td>(median)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In behavioral discrimination, all participants performed better on detecting /æ/ compared to /ə/ among /Λ/ standards.

Behavioral task
\( /ə/-/æ/ < /ə/-/Λ/ \)

<table>
<thead>
<tr>
<th></th>
<th>Am Eng</th>
<th>Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral</td>
<td>90%</td>
<td>68%</td>
</tr>
<tr>
<td>task /æ/</td>
<td>85%</td>
<td>85%</td>
</tr>
<tr>
<td>(median)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When /ə/ was the standard, Spanish listeners showed better discrimination of /ə/-/Λ/ than compared to the reversal and showed poor discrimination of /æ/.
No MMN + pMMR

- When /a/ is deviant among /ʌ/ standards...
  - discrimination not registered at a higher (phonological) level
  - spectral > durational

- pMMR found in young children who do not yet have automatic speech processing (Shafer, Yu, & Datta, 2010)
Conclusion

- No evidence that the Spanish speakers made use of the temporal cue to aid in discriminating the difficult contrast.

- Preliminary data with Japanese listeners in the same paradigm showed that these listeners can use the temporal cue at the automatic level (MMN), but not for the behavioral discrimination task.
Significance & Broader Impact

Distinguish “impairment” versus “need for more English input”.

○ "hat" and "hot” easier than "hot" and "hut”

○ Transfer to spelling; "hot" and "hut" \(\rightarrow\) homophones

ESL/EFL teachers could use direct training in perception of the durational cues to improve students’ comprehension and production of L2 phonemes.
Future Directions

- Examine whether English exposure and use lead to improved discrimination of English vowels and increased reliance on spectral and/or durational information at the automatic level of processing indexed by the MMN.

- Can targeted training for use of the duration cue be effective?
Acknowledgments

Winifred Strange
Eve Higby
Kikuyo Ito
Miwako Hisagi
Yana Gilichinskaya
Jason Rosas
Sarah Kresh
Nancy Vidal
Yan H. Yu

Funding

NSF BCS-0718340
(Valerie Shafer & Winifred Strange)

NSF SMA-1659607
(Isabelle Barriere & Jonathan Nissenbaum)

Contact

mailbox.dcastillo@gmail.com
Design

- 64-channel Geodesic Amplifiers
- Geodesic net
- Filter bandwidth .01-100 Hz
- Sampling rate: 250 Hz
- Post-processing 30 Hz low-pass
Results

- Behavior partially matches ERPs for /ɑ/-/ʌ/, but Spanish group showed robust MMN to /æ/-/ə/ despite poor behavioral discrimination